
A Very Large Neighbourhood Search approach
to the Swath Segment Selection Problem

Roberto Cordone, Daniel Dissegna
Università degli Studi di Milano, Dipartimento di Informatica, Milano, Italy

roberto.cordone@unimi.it,daniel.dissegna@unimi.it

Keywords : Swath Segment Selection, Knapsack problem, Very Large Neighbourhood Search.

1 Introduction

The Swath Segment Selection Problem (SSSP) arises from the planning of Earth observations
performed by satellites in quasi-polar orbits. As their movement combines with the Earth ro-
tation, such satellites observe stripes of surface (swaths), that follow a north-east to south-west
path during the descending semi-orbits and a south-east to north-west path during the ascend-
ing ones (see Figure 1). Each swath consists of a sequence of disjoint observation opportunities
(segments), that can overlap with segments of other swaths. The portion of a target belonging
to one or more overlapping segments is named shard. The SSSP amounts to deciding which
segments to select, considering that the images collected in a swath are stored in a limited
memory device and downlinked to ground stations at the end of each swath. The memory
required by a shard depends on the segment used to collect it, due to the different extension
of the shard along the main direction of the swath. Different shards yield different rewards.
Collecting the same shard more than once is useless.

Satellite
Descending
semi-orbit

Ascending
semi-orbit

Descending swathAscending swath

Ascending�
swath

Descending �
swath

Overlapping
swath �
segments

Shard

Target

FIG. 1: Basic definitions: swaths, segments and shards

Muraoka [4] introduced the SSSP and proposed a constructive heuristic (ASTER) to solve
it. Knight and Smith [3] developed a branch-and-bound algorithm, computing upper bounds
with a network flow relaxation. Cordone et al. [1] implemented a branch-and-bound based on
a Lagrangean relaxation of an Integer Linear Programming (ILP) formulation. Lagrangean
relaxations and decompositions were discussed in [2]. Perea et al. [5] applied Constraint Pro-
gramming to a variant where all shards must be collected at minimum cost.

Let S be the set of swaths, bs the capacity of memory along swath s ∈ S, H the set of
shards, rh the reward gained collecting shard h ∈ H. The set of all segments N is partitioned
into disjoint subsets N̄s of segments belonging to each swath s ∈ S or into disjoint subsets N̂h

of segments covering each shard h ∈ H. Conversely, hi is the shard covered by segment i and
ish the segment in swath s covering shard h (if there is any). Ŝh ⊆ S is the subset of swaths

covering shard h ∈ H. The memory required to select segment i ∈ N is ai. Formulation (1-5)
uses binary variables xi and yh to indicate, respectively, whether segment i ∈ N is selected or
not and shard h ∈ H is collected or not.

SSSP : max z =
∑
h∈H

rhyh (1)

s.t.
∑
i∈N̄s

aixi ≤ bs ∀s ∈ S (2)

yh ≤
∑

i∈N̂h

xi ∀h ∈ H (3)

yh ∈ {0, 1} ∀h ∈ H (4)
xi ∈ {0, 1} ∀i ∈ N (5)

The objective (1) maximizes the reward given by all collected shards. Constraints (2) restrict
the segments selected in each swath. Constraints (3) state that a shard is collected only
selecting one of the segments that cover it. Since collecting a shard multiple times is useless,
they can be turned into equalities.

2 The VLNS algorithm
We here describe a Very Large Neighbourhood Search (VLNS) approach, based on the search
for sequences of variable modifications in Formulation (1-5). To build a starting solution, we
assign to each segment i the reward of the shard hi it covers according to (3), and solve the
knapsack problems (2) related to the swaths in a given order, avoiding to select segments that
cover shards collected by previous swaths. As swaths in the same direction overlap less (if
ever), we apply two orders: first the ascending ones then the descending ones, and vice versa.

The VLNS approach (see Algorithm 1) receives this feasible starting solution (x, y) and
returns an improved one (x∗, y∗). For the sake of simplicity, all following pseudocodes consider
the instance data as directly accessible. Procedure LocalSearch looks for a feasible improving
solution in an exponential-size neighborhood, composed by the solutions that collect a new
shard, uncollect at most one, and swap the segments that cover λ ≥ 0 currently collected
shards. If the new solution improves the best known, parameter λ goes back to 1; otherwise,
it increases to consider other solutions. The computational effort is limited restricting the
number of segment swaps (λmax ≤ |H|), the overall computational time (Tmax) and the number
of uncollected shards considered (µmax ≤ |H|).

1 Algorithm VLNS(x, y, λmax, Tmax, µmax)
2 (x∗, y∗) := (x, y); λ := 1;
3 do
4 (x, y) := LocalSearch(x, y, λ, µmax);
5 if z(x, y) > z(x∗, y∗) then
6 λ := 1; (x∗, y∗) := (x, y);
7 else
8 λ := λ+ 1;
9 end

10 while (λ <= λmax) or (time > Tmax);
11 return (x∗, y∗)

Algorithm 1: The VLNS algorithm

The LocalSearch procedure (see Algorithm 2) builds the set H̄ of shards currently uncol-
lected. As long as this set is nonempty and the number of shards considered does not exceed
µmax, it extracts from H̄ the shard h∗ with maximum reward. For every swath that covers it,
the procedure marks all shards as modifiable and calls function CollectShard to find a solution
(x′, y′) covering h∗ with swath s. The first improving solution found is returned.

1 Function LocalSearch(x, y, λ, µmax)
2 H̄ := {h ∈ H : yh = 0}; µ := 0;
3 while (H̄ 6= ∅) and (µ < µmax) do
4 h∗ := arg max

h∈H̄
rh; H̄ := H̄ \ {h∗}; µ := µ+ 1

5 for s ∈ S̄h∗ do
6 for h ∈ H do
7 vh := false;
8 end
9 (x′, y′) := CollectShard(x, y, rh∗ , h∗, s, v, λ);

10 if z(x′, y′) > z(x, y) then return (x′, y′); ;
11 end
12 end
13 return (x, y);

Algorithm 2: The LocalSearch procedure

The CollectShard procedure (see Algorithm 3) looks for a chain of at most λ variable mod-
ifications that gains a reward r∗ collecting shard h along swath s. The procedure is recursive.
In the base case (λ < 0), the problem has no solution. Otherwise, we increase yh and xish

to
collect shard h using the only segment in swath s that covers it. If the resulting solution is
feasible, we directly return it. Otherwise, we mark the shard as nonmodifiable, and scan all
segments in swath s (j ∈ N̄s) that collect a modifiable shard (xj = 1 ∧ vhj = false) whose
removal yields a feasible solution. If the shard hj has a reward smaller than r∗, we get a
feasible and improved solution, and simply return it. Otherwise, we try to recollect hj with
a new swath s′ by recursively calling CollectShard. The process generates a chain of variable
modifications that increase a variable y, alternatively decrease and increase λ ≥ 0 variables x
and possibly decrease a variable y.

1 Function CollectShard(x, y, r∗, h, s, v, λ)
2 if λ < 0 then return (x, y) ;
3 yh := 1; xish

:= 1;
4 if

∑
i∈N̄s

aixi ≤ bs then return (x, y) ;
5 vh := true;
6 for j ∈ N̂s : xj = 1 ∧ vhj = false ∧

∑
i∈N̄s

aixi − aj ≤ bs do
7 xj := 0;
8 if rhj < r∗ then
9 yhj := 0;

10 return (x, y);
11 else
12 for s′ ∈ S̄ \ {s} do
13 return CollectShard(x, y,r∗,hj ,s′,v,λ− 1);
14 end
15 end
16 xj := 1;
17 end
18 return (x, y);

Algorithm 3: The CollectShard procedure

3 Results

The benchmark instances of [1] consider n ascending and n descending swaths, with 14 values
of n ranging from 10 to 500. Each shard is covered by a segment of each group of swaths

(|N̂h| = 2) and its reward is drawn from {1, . . . , 100} or {51, . . . , 100} with a uniform random
distribution. The same holds for the memory consumption of each segment, but the values for
the two segments covering the same shard are either independent or identical. The capacity
of each swath is a fraction of the smallest total memory consumption along the swath: bs =
αmins∈S

∑
i∈N̄s

ai, with α ∈ {0.2, 0.3, 0.4}. Overall, there are 14 · 2 · 2 · 2 · 3 = 336 instances.
We compare the VLNS approach with the root node of the branch-and-bound of [1], which

applies 1 000 times a subgradient update and a Lagrangean heuristic. The execution time on a
processor Intel Xeon E5-2620 2.1 GHz and 16 GB of RAM ranges from 0.01 to 216 seconds (12
seconds on average). We saved the time for each instance and imposed it as a time limit Tmax
on the VLNS algorithm, but also set λmax = 20 and µmax = 500 to avoid spending time to
explore unpromising sequences. In about one third of the cases, these limits or the discovery
of a local optimum anticipated the termination, reducing the average time to 10 seconds.

In Table 1, the first column reports the size n. The following three ones provide (for the
Lagrangean approach) the percent gaps of the heuristic solution and of the upper bound with
respect to the best known result, and the running time in seconds. The last two columns provide
the heuristic gap and the running time for the VLNS approach. The values are averaged over
the 24 instances of each size. The VLNS approach outperforms the Lagrangean one, decreasing
the average gap from 2.10% to 1.24% and improving 58 of the 271 best known solutions not
provably optimal. VLNS seems a viable way to obtain good heuristic solutions in short time.

Lagrangean approach VLNS
n GapLB GapUB CPU GapLB CPU
10 6.10% 0.08% 0.030 1.77% 0.006
20 3.32% 0.59% 0.285 1.00% 0.200
30 2.38% 0.53% 0.625 0.90% 0.560
40 1.96% 0.53% 1.054 1.00% 0.995
50 1.84% 0.50% 1.504 1.12% 1.507
60 1.71% 0.48% 2.063 1.21% 1.991
70 1.65% 0.42% 2.658 1.07% 2.268
80 1.64% 0.43% 3.393 1.14% 3.182
90 1.56% 0.42% 4.124 1.21% 3.635
100 1.48% 0.39% 4.721 1.26% 4.138
200 1.46% 0.34% 14.039 1.37% 11.849
300 1.44% 0.33% 26.974 1.41% 23.289
400 1.46% 0.33% 43.526 1.43% 36.576
500 1.43% 0.32% 63.136 1.41% 54.455

TAB. 1: Average gaps and computational times for the Lagrangean and the VLNS approach
References
[1] R. Cordone, F. Gandellini, and G. Righini. Solving the swath segment selection problem

through Lagrangean relaxation. Comput Oper Res, 35(3):854–862, March 2008.

[2] R. Cordone, G. Righini, and A. Taverna. Upper and lower bounds for the swath segment
selection problem. In Proc. of CTW17, pages 53–56, Cologne, Germany, June 6–8 2017.

[3] R. Knight and B. Smith. Optimal nadir observation scheduling. In Proc. of IWPSS 2004,
Darmstadt, Germany, June 23–25 2004. ESA–ESOC.

[4] H. Muraoka, R. H. Cohen, T. Ohno, and N. Doi. ASTER observation scheduling algorithm.
In Proceedings of SpaceOps 1998, Tokio, Japan, June 1–5 1998.

[5] F. Perea, R. Vazquez, and J. Galán-Vioque. Swath-acquisition planning in multiple-satellite
missions: An exact and heuristic approach. IEEE Trans Aerosp Electron Syst, 1(3):1717–
1725, July 2015.

